ISSN 1301-109X | e-ISSN 2147-8325
Northwestern Medical Journal
Computational Repurposing of Certain Monoclonal Antibodies for the Treatment of Systemic Lupus Erythematosus [Turk J Immunol]
Turk J Immunol. 2023; 11(2): 51-58 | DOI: 10.4274/tji.galenos.2023.88700

Computational Repurposing of Certain Monoclonal Antibodies for the Treatment of Systemic Lupus Erythematosus

Haitham Ahmed Al-Madhagi
Biochemical Technology Program, Dhamar University, Dhamar, Yemen

Objective: More than 3 million individuals globally suffer from systemic lupus erythematosus (SLE) with no radical therapy for such a multi-organ disease. The present in silico study explores the virtual repurposing of certain monoclonal antibodies (mAb) against the emerging target toll-like receptor 7 (TLR-7).
Materials and Methods: The 3D structure of TLR-7 and the shortlisted mAb were retrieved from Alphafold and Thera-SabDab datasets, which were then subjected to docking by pyDockWEB and HDOCK webservers. Molecular dynamics (MD) simulations and MM/GBSA were also predicted for the best docked complex.
Results: Bevacizumab was the best potential antagonist mAb of human TLR-7 in terms of protein docking. MD simulations unveiled the stability and the flexibility of the docked complex and MM/GBSA predicted the hotspot residues of the TLR-7-Bevacizumab.
Conclusion: Bevacizumab can be deemed as potential repurposed mAb for treating SLE in silico, which needs experimental validation.

Keywords: Systemic lupus erythematosus, autoimmune disease, mAb, docking, MD simulations

Haitham Ahmed Al-Madhagi. Computational Repurposing of Certain Monoclonal Antibodies for the Treatment of Systemic Lupus Erythematosus. Turk J Immunol. 2023; 11(2): 51-58

Corresponding Author: Haitham Ahmed Al-Madhagi, Yemen
Manuscript Language: English
LookUs & Online Makale