Haitham Ahmed Al Madhagi

Abstract

Objective:

More than 3 million individuals globally suffer from systemic lupus erythematosus (SLE) with no radical therapy for such a multi-organ disease. The present in silico study explores the virtual repurposing of certain monoclonal antibodies (mAb) against the emerging target toll-like receptor 7 (TLR-7).

Materials and Methods:

The 3D structure of TLR-7 and the shortlisted mAb were retrieved from Alphafold and Thera-SabDab datasets, which were then subjected to docking by pyDockWEB and HDOCK webservers. Molecular dynamics (MD) simulations and MM/GBSA were also predicted for the best docked complex.

Results:

Bevacizumab was the best potential antagonist mAb of human TLR-7 in terms of protein docking. MD simulations unveiled the stability and the flexibility of the docked complex and MM/GBSA predicted the hotspot residues of the TLR-7-Bevacizumab.

Conclusion:

Bevacizumab can be deemed as potential repurposed mAb for treating SLE in silico, which needs experimental validation.

Keywords:

Systemic lupus erythematosus, autoimmune disease, mAb, docking, MD simulations

VOLUME

11

,

ISSUE

2
August 2023

Correspondence

Haitham Ahmed Al Madhagi

Email

bio.haitham@gmail.com

Received

Accepted

Published

Suggested Citation

DOI

License

This work is licensed under the Creative Commons Attribution-NonCommercial-Non-Derivatives 4.0 International License (CC BY-NC-ND 4.0). License