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PANoptosis: A Coordinated Response in the Diversity 
of Cell Death

Abstract
The recently introduced concept of PANoptosis describes a highly regulated mechanism in-
volving the coordinated action of pyroptosis, apoptosis, and necroptosis. However, none of 
these three types of cell death can explain this concept alone. PANoptosis is mediated by 
a structure called the PANoptosome. PANoptosome components can be formed in differ-
ent ways according to triggers and receptor interactions. Therefore, stimulators and regu-
lators become central to understanding the mechanism of PANoptosis. In this review, the 
mechanism of PANoptosis was summarized in general, and PANoptosome regulators in the 
literature were discussed collectively. We aimed to contribute to the possible therapeutic 
approaches.
Keywords: PANoptosis, pyroptosis, apoptosis, necroptosis, cell death

Introduction
Programmed cell death (PCD) mechanisms are an inherent part of protection 
against pathogens and cellular stress. Pyroptosis, apoptosis, and necroptosis are 
the best-known PCD pathways that protect the body against both internal and 
external risk factors (1, 2). The observation that all three cell death pathways can 
be activated in response to certain stimuli, such as influenza virus (IAV) infection, 
has raised the question of whether they are triggered independently or work in 
concert. In 2019, PANoptosis (P, pyroptosis; A, apoptosis; N, necroptosis), a concept 
that encompasses the interplay of pyroptosis, apoptosis, and necroptosis, was de-
fined by realizing that the three PCD mechanisms are linked (3). With the discovery 
of the regulators of the PANoptosis mechanism, it became evident in 2020 that 
these three death pathways are controlled through the PANoptosome complex 
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(4). PANoptosis is an inflammatory PCD mechanism that 
highlights the important cross-talk and coordination be-
tween the three death pathways regulated by the forma-
tion of PANoptosome complexes as a result of complex 
interactions of different receptors and molecular signal-
ing. It has been associated with many diseases, including 
infectious, neurodegenerative, autoinflammatory, can-
cer, and metabolic (5, 6). In particular, inflammasome el-
ements, which act as constituents of the PANoptosome, 
have a pivotal function in the regulation of inflammatory 
responses and cell death pathways. Components such 
as the NOD-like receptor family and pyrin domain-con-
taining 12 (NLRP12) also contribute to the activation of 
PANoptosomes, as well as the inflammasome, shaping 
inflammatory outcomes and cell death (7).      

PANoptosome production and PANoptosis activation 
begin with sensing pathogen-associated molecular 
patterns (PAMP), damage-associated molecular pat-
terns (DAMPs), or other risk factors. Almost all PAN-
optosomes share common structural components of 
pyroptosis, apoptosis, and necroptosis. In essence, a 
PANoptosome consists of three types of structures: 
the sensor protein, which is important for sensing and 
determining the type of PANoptosome; the adaptor 
protein region with the caspase (CASP) recruitment do-
main (CARD); and the effector protein, which is required 
for subsequent catalytic activity. In general, the initi-
ation of PANoptosis involves sensing endogenous or 
exogenous danger signals by specific sensors, such as 
absent in melanoma 2 (AIM2), Z-DNA binding protein 
1 (ZBP1), NLRP12, followed by the transduction of sig-
nals recognized by downstream adapter proteins to ef-
fector proteins. These effectors, gasdermin D (GSDMD), 
Casp3, Casp7, and mixed lineage kinase domain-like 
protein (MLKL), are activated in response to PANop-
tosome formation and drive PANoptosis. These are 
followed by pyroptosis, which is mediated by GSDMD, 
Casp8-dependent apoptosis, and necroptosis, which is 
mediated by MLKL. Amongst them, GSDMD is cleaved 
by Casp1 and certain other caspases. Casp3 and Casp7 
are activated by Casp8, while receptor-interacting pro-
tein kinase 1 (RIPK1) interacts with RIPK3 for activa-
tion. MLKL is then phosphorylated, and PANoptosis is 
induced through the three death pathways (8). How-
ever, this generalization is not valid for every stimulus. 
The components and interactions that make up the 
PANoptosome vary depending on the triggers. There-
fore, the PANoptosome has become a central focus for 
the study of the mechanism of PANoptosis (5). 

An important point to consider in understanding PAN-
optosis is the coactivation of the three death pathways 
(pyroptosis, apoptosis, and necroptosis). However, this 
does not mean all three cell death forms occur simul-
taneously. In some cases, when one type of cell death 
in PANoptosis is inhibited, other types of cell death can 
be promoted (9). For example, in Salmonella infection, 
a PANoptosis mechanism can be observed in which py-
roptosis and apoptosis are inhibited, and necroptosis is 
promoted by the down-regulation of Casp8 (10).

Awareness of the basic mechanisms of types of PCD is 
important for understanding the mechanism of PANop-
tosis and its relationship with diseases, as these process-
es are interconnected in PANoptosis through common 
regulatory proteins and signaling pathways.  

Pyroptosis, Apoptosis, 
Necroptosis
Each multicellular organism has a number of processes 
that kill its own cells. Physiologically, the reasons for 
this are related to defense, development, homeostasis, 

Highlights

•	 PANoptosis provides an integrated cell death 
mechanism that responds to a wide range of 
triggers, from viruses to fungi, supporting the 
immune response against invading pathogens.

•	 The composition of the PANoptosome varies 
depending on specific triggers and disease con-
texts; this review compiles PANoptosis regula-
tors that have previously been discussed sepa-
rately in the literature.

•	 Reviewing the molecular interactions among 
pyroptosis, apoptosis, and necroptosis, draws 
attention to the context-dependent roles of 
caspases, contributing to a better understand-
ing of PANoptosis.

•	 Recent findings on macrophage polarization, 
dendritic cell activation, and immunogenic cell 
death have begun to shape our understanding 
of the role of PANoptosis in tumor immunity.

•	 The coordinated activation of pyroptosis, apop-
tosis, and necroptosis in PANoptosis does not 
necessarily indicate that all three cell death 
pathways occur simultaneously.
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and aging. Apoptosis is a morphologically recognizable 
form of cell death that can occur through multiple 
mechanisms (11).  Apoptosis, one of the first defined 
PCD pathways, can occur through three pathways. En-
dogenous (intrinsic) apoptosis, exogenous (extrinsic) 
apoptosis, and the later identified endoplasmic retic-
ulum (ER) stress pathway. Intrinsic and extrinsic path-
ways are summarised in Figure 1. In the endogenous 
apoptosis pathway, mitochondrial damage or dysfunc-
tion causes the outer membrane to become permeable, 
releasing several molecules, including cytochrome C 
(cyto-C). Subsequently, cytosolic cyto-C is recognized 
by Apaf-1. Casp9, an intrinsic apoptosis pathway ini-
tiator, is activated by cyto-C to mediate apoptosome 
formation (12). Afterward, Casp3, Casp6, and Casp7 are 
activated, and apoptosis occurs (13). The Bcl-2 gene 
family regulates this pathway (14). Binding extracellu-
lar death ligands to death receptors on the cell surface 

initiates the extrinsic apoptosis pathway and triggers 
apoptosis. Casp8 has been identified as the initiator of 
this pathway (15). These ligands can be secreted by im-
mune cells (T lymphocytes, natural killers [NKs], mac-
rophages, and dendritic cells [DCs]). The subsequent 
signaling pathway differs depending on the activated 
ligand (16). In the stress-induced apoptosis pathway 
of the ER, a response termed the unfolded protein re-
sponse (UPR) is triggered when the stress of the ER is 
experienced due to various factors. The UPR is activated 
by three major ER stress-integrated proteins: inositol 
requiring enzyme-1 (IRE1), protein kinase RNA-like en-
doplasmic reticulum kinase (PERK), and activating tran-
scription factor 6 (ATF6). This is followed by a process 
in which the pro-apoptotic proteins Bcl-2 associated 
X protein (BAX), Bcl-2 associated agonist of cell death 
(BAD), and Bcl-2 antagonist/killer (BAK) are activated 
(17). Killer caspases have the ability to initiate apopto-

Figure 1. General representation of signaling molecules involved in endogenous and exogenous apoptosis pathways. While signaling 
molecules basically mediate apoptosis, they also play a role in the PANoptosis mechanism by cross-talking with molecules involved in pyro-
ptosis and necroptosis. (Modified and created with BioRender.com by Karaca, M.  Adapted from "Apoptosis Extrinsic and Intrinsic Pathways" 
by BioRender.com, 2025. Retrieved from https://app.biorender.com/biorender-templates)

https://app.biorender.com/biorender-templates
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sis by acting on chaperones and approximately a thou-
sand substrates. The morphological characterization of 
apoptotic cells is also well-known (18).

Pyroptosis was first reported in 1992 as Casp1-mediated 
cell death (19). However, its mechanism was elucidated 
in the following years with the realization that GSDMD 
is a target for cleavage by different caspases (20, 21). 
Thus, pyroptosis was identified as a GSDMD-driven lytic 
and inflammatory-driven cell death program. GSDMD is 
a lethal protein that is proteolytically cleaved and ac-
tivated by pro-inflammatory caspases (Casp1/4/5/11), 
forming cytoplasmic membrane pores (19). Pro-inflam-
matory caspases are localized in inflammasomes, which 
are large cytosolic protein complexes that can cleave 
and activate protein substrates. Inflammasomes are 
a complex that executes pyroptosis of multimeric pro-
tein structures formed in a cell to regulate host defense 
mechanisms against infectious agents and physiological 

perturbations (22). Some NOD-like receptors (NLRs) and 
other sensors, such as AIM2, act as sensors for assem-
bling inflammasomes. Inflammasomes often contain 
the apoptosis-associated speck-like (ASC) adaptor pro-
tein, which has both the pyrin domain (PYD) and CARD. 
Following the formation of the inflammasome, inactive 
pro-IL-1ß, and pro-IL-18 cytokines are cleaved and re-
leased in their mature and bioactive form as IL-1ß and 
IL-18, similar to GSDMD, and pyroptosis is initiated (23), 
summarised in Figure 2. According to distinct molec-
ular mechanisms, it can occur in four ways: canonical, 
non-canonical, Casp3/8-mediated, and granzyme-me-
diated (24). Pyroptosis occurs mainly in professional 
phagocytes of the myeloid lineage but is also seen in 
some other cell types, such as CD4+ T lymphocytes and 
neurons (25). Furthermore, while GSDMD is the most 
well-known executioner protein of pyroptosis, it is not 
the only gasdermin capable of inducing pyroptotic cell 
death (26). 

Figure 2. Structures involved in NLRP3 inflammasome-mediated pyroptosis mechanism. (Modified and created with BioRender.com by 
Karaca, M. Adapted from “NLRP3 Inflammasome Activation” by BioRender.com, 2025. Retrieved from https://app.biorender.com/bioren-
der-templates)

https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates
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Although necroptosis is activated by MLKL phosphoryla-
tion mediated by RIPK1 and RIPK3 oligomerization rath-
er than caspase cleavage, its initiation requires Casp-8 
inhibition. Nevertheless, unlike apoptosis and pyroptosis, 
it is generally considered caspase-independent (27). It 
is a regulated form of necrosis in which the dying cell 
releases its intracellular components, which can trigger 
an innate immune response (28). Necroptosis is typically 
caused by tumor necrosis factor (TNF), Fas, or lipopoly-
saccharide (LPS) activating RIPK3 kinase, allowing the 
subsequent phosphorylation of the pseudokinase MLKL. 
It is triggered by Casp8-mediated disruption of apopto-
sis and depends on receptor-interacting protein kinases 
(RIPK1/3) and the mixed lineage kinase domain to form 
the necroptosome. The release of cytosolic contents and 
cell death-associated molecular patterns (CDAMPs) can 

trigger innate immune responses and promote acquired 
immune responses (29).  

These three death pathways have a more complex 
mechanism than outlined above and are regulated by 
many additional factors not mentioned here (1, 18). The 
focus of this review is PANoptosis, which arises from the 
interactions among these three death pathways that act 
together, as well as the connections between the PAN-
optosome and diseases and the associated regulatory 
molecules.

PANoptosome Component
The PANoptosome serves as an integrative platform for 
the simultaneous interaction of the active elements of 

Figure 3. Components involved in PANoptosome formation. The components depicted in the figure do not coexist in this exact arrange-
ment during PANoptosome formation. Variations in formation are seen according to the type of PANoptosome. Therefore, both sensor 
molecules and stimulus diversity are essential. PANoptosome structure should be evaluated specific to the pathogen and should not be 
generalised. (Created with BioRender.com by Karaca, M., 2025)
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the three death pathways. This flexible, multiprotein 
complex consists of several proteins, including serine/
threonine kinases, caspases, and specific death do-
mains. Various stimuli such as IAV, vesicular stomatitis 
virus, Listeria monocytogenes, and Salmonella enterica 
serovar Typhimurium activate sensors such as ZBP1 that 
trigger the formation of PANoptosome. Once the PANop-
tosome is formed, it promotes the activation of execu-
tors in each death pathway, including apoptosis mediat-
ed by Casp3/7, pyroptosis via GSDMD/E, and necroptosis 
driven by RIPK1/MLKL (4, 30-38). (Figure 3 summarises 
the structures mainly involved in PANoptosome forma-
tion.) Sensors encountering stimuli interact with various 
molecules to form PANoptosomes. The components of 
PANoptosomes vary depending on the stimulus and the 
sensor. The known types of PANoptosomes are summa-
rized in Figure 4.

It was initially shown that the PANoptosome is composed 
of RIPK1, CARD, NLRP3, and caspases (39). Further stud-
ies showed that RIPK3, Casp6, ZBP1, and Casp1 are also 
involved in the PANoptosome formation triggered by IAV 
infection (32). Understanding the diversity of these mole-
cules and how they interact reveals that the three types of 
PCD are interconnected, constituting PANoptosis. Rather 
than being activated separately, they are regulated togeth-
er by the PANoptosome complex, inducing cell death (3, 4, 
39). In some cases, inhibition of pyroptosis allows Casp8 to 
activate the inflammasome, which may trigger both apop-
tosis and a Casp8-dependent form of cell death known as 
secondary pyroptosis (4, 40, 41). Moreover, the inhibition of 
Casp-8 results in the formation of complex IIb via the TNF 
or Toll-like receptor (TLR) pathway, which ultimately cul-
minates in necroptosis (42). These analogous mechanisms 
permit us to comprehend the reasons behind the non-stan-
dardized structure of the PANoptosome, the potential for 

Figure 4. Types of PANoptosome defined for different stimuli. (Created with BioRender.com by Karaca, M., 2025)
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it to comprise disparate components and the necessity 
for a PANoptosome in which the three death pathways  
operate in concert. 

The components of the PANoptosome vary between 
different diseases. Therefore, the main phenotypic 
members can vary depending on the type of stimulus 
applied. Single cell analysis of PANoptosome complex-
es has led to a better understanding of PANoptosomes 
under specific conditions (30, 43). In addition to the first 
described PANoptosomes, RIPK1-PANoptosome and 
NLRP12-PANoptosome were identified (7, 44). Most re-
cently, it was reported that NLR family, CARD domain 
containing 5 (NLRC5) similarly mediates PANoptosome 
formation (45).

In the mechanism of PANoptosome formation, the struc-
tures that give the aforementioned PANoptosome types 
their names (ZBP1, AIM2, RIPK1, NLRP12) act as sensors 
for triggers such as various microbial infections and altered 
cellular homeostasis. Sensor interactions then initiate the 
assembly of other components to form the PANoptosome. 
In necroptosis-associated structures, homotypic actions 
among receptor-interacting protein homotypic interac-
tion motifs (RHIMs) domains and in the assembly of py-
roptotic and apoptotic structures, heterotypic actions be-
tween the PYD and the death effector domain are realized 
(46-49). The PANoptosome is thought to be formed by 
similar interactions. Furthermore, intrinsically disordered 
regions (IDRs) have alternatively been reported to be in-
volved in PANoptosome formation (30). The known iden-
tified PANoptosome types; ZBP1-PANoptosome (ZBP1, 
NLRP3, ASC, Casp1, Casp6, Casp8, RIPK1 and RIPK3) (4, 
50), AIM2-PANoptosome (AIM2, Pyrin, ZBP1, ASC, Casp1, 
Casp8, Fas-associated death domain [FADD], RIPK1 and 
RIPK3) (51), RIPK1-PANoptosome (RIPK1, RIPK3, NLRP3, 
ASC, Casp1 and Casp8) (44) and NLRP12-PANoptosome 
(NLRP12, ASC, Casp8 and RIPK3) (7). These PANopto-
somes then induce Casp3/7 activation, GSDMD / E cleav-
age, and phosphorylation of MLKL, leading to membrane 
pore formation and PANoptosis progression (52). A sys-
tematic examination of the established molecular con-
stituents of pyroptosis, apoptosis, and necroptosis, as an-
alyzed through STRING, indicates that these three forms 
of cell death are not independent processes. This observa-
tion supports the hypothesis that they are part of a larger, 
interconnected PCD network (46, 53). 

Furthermore, the formation of PANoptosomes can be 
regulated by interferon regulatory factor 1 (IRF1) in spe-

cific circumstances (54). This topic has been elaborated 
in the section on ‘Regulatory Factors and Diseases.’

ZBP1-PANoptosome 
ZBP1 is also known as a DNA-dependent activator of 
interferon-regulatory factors (DAI) or a DNA-dependent 
activator of DLM1. ZBP1 consists of three parts: N-ter-
minal Z-DNA binding domain (ZBD), RHIM, and C-termi-
nal signal domain (SD) (55-57). The N terminal contains 
two Z-form nucleic acid binding domains (Zα1 and Zα2) 
and a protein homotypic interaction motif (RHIM1 and 
RHIM2) in the middle that interacts with two receptors. 
It is inducible by interferon (IFN) and interacts with the 
RHIM domain and other proteins. The Zα2 domain plays 
a critical role in the activation of PCDs (51, 58).

Activation of ZBP1 results in its interaction with RIPK3 
and recruitment of Casp8, thereby forming cell death 
signaling scaffolds. The resulting ternary complex has 
the capacity to activate all three death pathways. Fur-
thermore, ZBP1 induces NF-κB signaling during influen-
za infection (59, 60). 

In addition to its ability to recruit cell death elements 
such as RIPK3 and Casp8, which are required for the for-
mation of PANoptosomes, ZBP1 can activate cell death 
signals. A lack of Zα domains has been demonstrated to 
restrict infection-induced ZBP1 mediated inflammatory 
cell death (55, 56, 58). ZBP1 deletion prevents IAV-in-
duced activation of the NLRP3 inflammasome. Addi-
tionally, RIPK1 plays an active role in preventing ZBP1/
RIPK3/MLKL-dependent necroptosis during the develop-
ment of RHIM (61, 62). 

Recently, a novel cell death complex known as TRIFos-
ome, which is triggered by TRIF signaling and involves 
FADD, RIPK1, and Casp8, has been reported. This com-
plex has a critical role in LPS-induced cell death in the 
context of transforming growth factor-β (TGF-β)-acti-
vated kinase 1 (TAK1) inhibition (63). The regulatory im-
portance of TAK1 for PANoptosis has been mentioned in 
the “Regulatory Factors and Diseases” section. Despite 
the absence of evidence indicating a direct interaction 
between TRIF and other death mediators, it is plausible 
that TRIF may facilitate the assembly of the PANopto-
some complex through its RHIM domain. 

PANoptosis caused by ZBP1-PANoptosome is bidirec-
tional. It promotes the elimination of invading patho-
gens and dysregulated cancer cells, but aberrantly, it 
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may trigger severe infectious and non-infectious inflam-
matory responses (64).

AIM2-PANoptosome
The inflammasome is an oligomeric multiprotein complex 
located in the cytosol. It is not a fixed cell structure but 
only forms when stimulated by specific DAMPs and PAMPs. 
Inflammasomes are classified according to the structure 
of the sensor molecule (64-68). AIM2 is one of these sen-
sor molecules, characterized by a hematopoietic, interfer-
on-induced, and nuclear localization (HIN) region at the 
carboxyl site and a PYD at the amino-terminal. The AIM2 
inflammasome is activated in response to the presence 
of dsDNA in the cytoplasm and mediates pyroptosis (69). 
DNA can be of microbial origin (from pathogens) or host 
DNA released during cellular stress or damage. 

Inflammasome formation is initiated following AIM2 de-
tection of dsDNA produced by pathogens, nucleus, and 
mitochondria. ASC establishes homotypic domain-based 
connections with AIM2 and pro-Casp1 through PYD-PYD 
and CARD-CARD. The components of AIM2-ASC-pro-
Casp1 bind to the pseudo-axis of double-stranded DNA, 
forming a large oligomeric complex. Casp1 is the mature 
form of pro-Casp1 that converts pro-IL-1β, pro-IL-18, and 
GSDMD into their active forms. IL-1β and IL-18 elicit a cas-
cade of inflammatory responses, while GSDMD-N binds to 
the cell membrane and induces pyroptosis (70,71). 

The inflammasome is a crucial component in the process 
of PANoptosis as a part of PANoptosomes (7). The inter-
action of pyrin and ZBP1 facilitates the formation of the 
AIM2-PANoptosome. However, current knowledge shows 
this is limited to infections such as herpes simplex virus 
1 and Francisella novicida and does not occur upon ex-
posure to pure dsDNA. Zα domains of ZBP1 are activated 
by detecting nucleic acids. AIM2 can also be controlled by 
activating the IFN signaling pathway. The AIM2-PANop-
tosome complex includes AIM2, pyrin and ZBP1 as well 
as ASC, Casp1, Casp8, RIPK3, RIPK1 and FADD (51). These 
additional components play an important role in facili-
tating the PANoptosis process. Targeting AIM2 or other 
components of the PANoptosome may show therapeutic 
efficacy in the treatment of inflammatory cell death mol-
ecules, as well as various viral and inflammatory diseases. 

RIPK1-PANoptosome
RIPK1 regulation of PANoptosis is crucial for maintaining 
cell homeostasis and mediating both PCD and inflamma-
tory reactions. The scaffolding role of RIPK1 facilitates 

survival signaling by assembling complex I that inhibits 
cell death, thereby maintaining TNF receptor-1 (TNFR-1) 
activity (30, 72-76). Complex I activate the NF-κB prosur-
vival pathway, yet should this signal be disrupted, com-
plex II will then initiate cell death (77, 78). In this con-
text, Casp8 can suppress necroptosis through proteolytic 
cleavage of RIPK, which are necroptotic mediators. Con-
versely, the deletion of Casp8 results in the formation of 
the necrosome (79-82). Deletion of RIPK1 in mice is em-
bryonically lethal and has been shown to cause systemic 
inflammation through activation of PANoptosis-like cell 
death regulated by RIPK3, with the involvement of Casp8 
and FADD (83-85). PAMPs, via TLRs or death receptor 
signaling, can promote RIPK1-dependent PANoptosome 
formation when regulatory proteins such as TAK1 are in-
hibited (39). Moreover, mutations that inactivate Casp8 
catalytic activity can lead to death in embryonic mice by 
activating RIPK1, RIPK3-MLKL, and Casp1 (86, 87). This 
situation could be considered as PANoptosis-relation 
death with the involvement of other effectors. However, 
it should be noted that MLKL has not been identified in 
the RIPK1-PANoptosome core scaffold. More specifical-
ly, these studies collectively contribute to understanding 
the regulation of PANoptosis by RIPK1 and Casp8 (30).

NLRP12-PANoptosome
NLRs belong to a group of cytoplasmic pattern recogni-
tion receptors (PRRs) that play a role in detecting patho-
gens or damage, regulating inflammatory signaling, and 
controlling the transcription of specific genes. NLRP12 is 
one of the first members identified in the NLR family to 
contain an N-terminal PYD, nucleotide-binding domain 
(NBD), and C-terminal leucine-rich repeat (LRR) domain 
(88). Furthermore, NLRP12 is the first identified to in-
teract with the adaptor protein ASC, leading to the for-
mation of an active inflammasome capable of releasing 
IL-1β (89). Following the introduction of the PANoptosis 
concept, it was recognized that NLRP12 not only acti-
vates the inflammasome in response to specific PAMPs or 
TNF but also drives PANoptosome activation, cell death, 
and inflammation. TLR2/4-mediated signaling through 
IRF1 leads to inflammasome formation. NLRP12 acts 
as an integral component of an NLRP12-PANoptosome 
that drives inflammatory cell death via Casp8 / RIPK3. 
PAMPs containing ‘heme’ groups can trigger cell death 
(90). Under certain conditions, these heme-containing 
PAMPs can also activate the NLRP3 inflammasome (91, 
92). In addition to the inflammasome, Casp8 has also 
been shown to play an essential role in directing NL-
RP12-mediated inflammatory cell death in response to 
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exposure to PAMP carrying the heme domain. With this, a 
multiprotein PANoptosome complex is formed that spe-
cifically contains ASC, RIPK3, Casp8, and NLRP3. PANop-
tosomes can form against heme-positive PAMPs even in 
the absence of NLRP3, demonstrating that NLRP12 is 
the main actor (7).

PAMPs and DAMPs released as a result of hemolysis-in-
ducing events can induce activation of TLR-2 and TLR4 
by a combination of ‘heme.’ Therefore, Myd88 signaling 
is also seen with NLRP12 activity. Mitochondrial reactive 
oxygen species (ROS) also contribute to NLRP12 induc-
tion. Activated NLRP12 triggers the formation of an NL-
RP12-PANoptosome protein complex involving RIPK3, 
ASC, and Casp8. This complex promotes the well-charac-
terized mechanism of gasdermins (D and E) cleavage in 
pyroptosis and pore formation in the plasma membrane, 
leading to PANoptotic cell death (93). During some infec-
tions, ZBP1 can be stimulated simultaneously with AIM2. 
This shows that it is possible to create PANoptosomes 
containing different sensors (51). 

Molecular Mechanisms and 
Involvement of the Three 
Types of Cell Death in 
PANoptosis      
In PANoptosis, the apoptosis, pyroptosis, and necropto-
sis pathways act together within the same cell, with the 
components of the three death pathways interacting with 
each other. This interaction has been described in the lit-
erature as cross-talk. The emerging understanding of the 
connections between cell death pathways has guided the 
conceptualization of PANoptosis as an inflammatory cell 
death mechanism. The caspase and RIPK families play 
the most prominent roles in cross-talk (36).

Caspases are members of the cysteine protease fami-
ly, proteolytic enzymes that are particularly well char-
acterized in apoptosis. They can be classified according 
to their role, mechanism of action, and the organism in 
which they are found. In addition to apoptosis, caspases 
are also involved in the nonapoptotic cell death pro-
cesses of necroptosis and autophagy. They also have 
central roles in pyroptosis (94). In mammals, caspases 
are classified into three functional groups according to 
their role: inducers (Casp2, Casp8, Casp9, Casp10), effec-
tors (Casp3, Casp6, Casp7), and inflammatory caspases 
(Casp1, Casp4, Casp5, Casp11, Casp12, Casp13, Casp14). 

Aside from some exceptional caspases, the roles of al-
most all known caspases in apoptosis, necroptosis, and 
pyroptosis have been described in detail (95, 96). Casp1, 
which is known to mediate pyroptosis, can function 
through the Bid-Casp9-Casp3 axis to initiate apoptosis in 
cells lacking GSDMD (94). Casp3, which is also involved 
in apoptosis, can initiate secondary necrosis and pyro-
ptosis after cutting the GSDMD-related protein DFNA5 
(97). Furthermore, GSDMD / DFNA5 redirects Casp3-me-
diated apoptosis to pyroptosis upon stimuli such as TNF 
or chemotherapy drugs (98, 99).

During PANaptosis, Casp1, Casp8, and Casp3 are activat-
ed simultaneously to induce cell death through a com-
plex interaction. Casp8 has emerged as a pioneer reg-
ulator that links the apoptotic and necrotic pathways. 
NLRP3 induces pyroptosis in inflammasome activation. 
Therefore, Casp8 plays a central role in PANoptosis, reg-
ulating the delicate balance between the three pathways 
and ultimately influencing cell fate by activating specific 
death signals (100, 101).

Apaf-1, one of the leading players in apoptosis, has 
been shown to cause Casp4-mediated pyroptosis (102). 
Looking at the close interaction between apoptosis and 
necroptosis at the signaling level, the double knockout 
assays FADD / RIPK3 and FLIP / RIPK3 reveal a complex 
cross-regulation of apoptosis and necrosis. FLIP (an im-
portant modulator of apoptosis) prevents the association 
of FADD-bound Casp8 homodimers that mediate apop-
tosis. Instead, Casp8-FLIP heterodimers form, preventing 
the activation of necrosis-mediating RIPK3. In the ab-
sence of this heterocomplex, RIPK3 promotes necrosis; 
however, when FADD is present without FLIP, Casp8-me-
diated apoptosis is favored (103). In other words, when 
RIPK3 expression is high, cells undergo necroptosis, 
whereas when RIPK3 expression is low, they tend toward 
apoptosis (104).

The binding of TNF-α to TNFR1 results in the formation 
of complex II also referred to as the cytosolic death-in-
ducing signaling complex (DISC), which is capable of 
mediating necroptosis. Polyubiquitination of RIPK1 
also affects the transition from complex I to complex 
II. Casp8 has the capacity to inactivate complex II and 
RIPK1-3 through proteolytic cleavage, thereby initiat-
ing the pro-apoptotic caspase cascade. On the contrary, 
when Casp8 undergoes deletion, depleted or inhibited 
complex II does not initiate the apoptotic program, and 
binding of TNFR1 causes necroptosis (105). 
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The first genetic argument for a relationship between 
pyroptosis and apoptosis was the ability of Casp1 to dis-
sociate Casp7 from its activation site in macrophages 
(106).

Casp8 can act on NLRP3 inflammasome-induced pyro-
ptosis interactions, interact with other inflammasomes, 
and mediate their activation (46). 

In the absence of GSDMD, Casp1 has been shown to in-
duce apoptosis by activating Casp3 and Casp7 in mono-
cytes and macrophages. In contrast, during apoptosis, 
Casp3 and Casp7 can specifically inhibit pyroptosis by 
interrupting GSDMD at a different point from inflam-
matory caspases that inactivate the protein (107, 108). 
 

Table 1. The key regulators of PANoptosis identified so far in various diseases and conditions.

Regulator Role Condition/Pathogen Mechanisms

M2, NS1, PB1-F2 Regulates ZBP1-NLRP3 Influenza Viral proteins act as regulators for  
PANoptosis

Casp6 Facilitates PANoptosis through the  
ZBP1-RIPK3 interaction

IAV infection 
Thyroid cancer

Bridges sensor-effector interaction,  
diagnostic marker in cancer

RDX Prognostic marker Breast cancer Associated with molecular clustering in 
PANoptosis-based survival prediction

Certain lncRNAs linked to  
PANoptosis Associated with metastasis Colon adenocarcinoma Linked to immune infiltration and tumor 

microenvironment

RIPK1, RIPK3, Casp8,  
NLRP3, ASC, Casp1 Forms RIPK-PANoptosome Yersinia infection Induces PANoptosis in macrophages 

independent of ZBP1

TAK1 Inhibits RIPK1 activation, prevents  
spontaneous PANoptosis Yersinia infection

TAK1-RIPK1 phosphorylation restricts 
PANoptosis; TAK1 inhibitors allow the 
formation of RIPK-PANoptosomes

ADAR1 Negative regulator of ZBP1-mediated 
PANoptosis Cancer Tumor suppressor through PANoptosis 

induction when inhibited

Caspase-1 (Casp1) Inhibits PANoptosis E. faecalis infection Suppresses osteoblast PANoptosis through 
regulation of the NLRP3 inflammasome

IRF1
It promotes PANoptosome assembly by 
various mechanisms. (such as the JAK/
STAT pathway)

COVID-19 
Cancer 
IAV infection

NLRP12 and RIPK1 activate PANoptosomes 
and inhibit tumor progression

ZBP1 Sensor for PANoptosis SLE 
Fungal infections

Activates immune response and links to 
immune cells through type I interferon 
signaling

S100A8/A9hi neutrophils ZBP1-mediated PANoptosis inducer Lung tissues of septic mice Mitochondrial dysfunctions and mtDNA-
mediated PANoptosis

SopF Regulates PANoptosis in epithelial cells Salmonella infection PDK1-RSK phosphorylation downregulates 
Caspase-8

AIM2 Activates the IL-23 / IL-7 axis, sensor for 
PANoptosis Psoriasis Inflammasome activation increases pro-

inflammatory cytokine release

NLRC5 Regulates PANoptosome formation Colitis 
Hemophagocytic lymphohistiocytosis

Activated by TLR2/4 signals and NAD+ 
levels

Melatonin, Dickkopf-1 Inhibits PANoptosis Ocular hypertension  
Diabetic retinopathy

Suppress cell death and retinal ganglion 
cell loss

M2: Matrix protein 2, NS1: Nonstructural protein 1, PB1-F2: Polymerase basic protein 1-F2, Casp6: Caspase-6, RDX: Radixin, RIPK1: Receptor-interacting protein kinase 1,  
RIPK3: Receptor-interacting protein kinase 3, Casp8: Caspase-8, NLRP3: NOD-like receptor pyrin domain containing 3, ASC: Apoptosis-associated speck-like protein containing 
a CARD, Casp1: Caspase-1, TAK1: TGF-β activated kinase 1, ADAR1: Adenosine deaminase acting on RNA 1, IRF1: Interferon regulatory factor 1, ZBP1: Z-DNA binding protein 
1, S100A8/A9hi: High expression of S100A8/A9, SopF:  Salmonella outer protein F, AIM2: Absent in melanoma 2, NLRC5: NLR family, CARD domain containing 5, TLR2/4: Toll-
like receptor 2/4, PDK1: 3-phosphoinositide dependent protein kinase-1, RSK: Ribosomal S6 kinase, IL-23: Interleukin 23, IL-7: Interleukin 7, SLE: Systemic lupus erythematosus, 
mtDNA: Mitochondrial DNA, IAV: Influenza A virus, COVID-19: Coronavirus disease 2019, SLE: Systemic lupus erythematosus, TGF-β: Transforming growth factor-beta,  
TLR2/4: Toll-like receptor 2/4.
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Inflammasome-activated Casp1 can cleave Bid, leading 
to the release of mitochondrial SMAC (the second mi-
tochondria-derived activator of caspases) and triggering 
subsequent necrosis (109). In apoptotic Casp3, it cleaves 
GSDMD at a cytotoxic N-terminal cleavage point, form-
ing an inactive fragment. This may potentially limit GSD-
MD-mediated pore formation and pyroptosis (46). 

Programmed cell death pathways are nonlinear, includ-
ing interactions not mentioned here. They are intercon-
nected and have complex signaling cascades and inter-
actions. These interactions between death pathways 
facilitate the fight against pathogenic agents, including 
preventing some of the escape strategies of cells gener-
ated by pathogens. For this reason, PANoptosis is import-
ant for the control of infections and host defense.

PANoptosis and Its 
Relationship with Different 
Modes of Cell Death
Available evidence of the relationship between PANop-
tosis and other pathways of PCD is still limited. Unlike 
PANoptosis, autophagy was traditionally thought to be 
regulated primarily through lysosomal pathways rather 
than caspase enzymes or RIPKs. In time, with the under-
standing that autophagy and apoptosis are in extensive 
cross-talk with each other, it is not surprising that many 
ATGs are recognized and cleaved by caspases (110-114). 
For instance, hATG3 can be cut down by Casp3, Casp6, 
and Casp8 (115).  While recent research has yet to es-
tablish a definitive connection between ER stress, auto-
phagy, and PANoptosis, their involvement in managing 
cellular stress and orchestrating PCD remains signifi-
cant. In central gene analyses performed in ulcerative 
colitis, the TIMP1, TIMP2, TIMP3, IL6, and CCL2 genes 
were identified as associated with PANoptosis and au-
tophagy (116). Some of the central genes associated 
with PANoptosis and autophagy have been reported to 
be correlated with certain immune system cell infiltra-
tions (116). Another study reported that mitochondrial 
damage mediated by S100A8/A9hi (high expression of 
S100A8/A9) neutrophils in lung tissues of septic mice 
causes mtDNA-mediated ZBP1 PANoptozome forma-
tion. The same study also reported that S100a8/a9 in-
creased the expression of LC3B, a marker of autopha-
gosomes (117). Furthermore, the impaired autophagy 
mechanism is known to lead to abnormal activation of 
inflammasomes by cross-talk (118).

In the metabolic-associated fatty liver disease (MAFLD) 
mice model, it has been reported that the ferroptosis in-
hibitor LPT1 can act as a PANoptosis blocker and may 
protect against steatosis (119). Screening for PANopto-
sis-related genes identified ten genes associated with 
colorectal adenocarcinoma (120). Among these, CAV1 
has regulatory roles for apoptosis, pyroptosis, and ferro-
ptosis (121-123). The GPX3, IGFBP6, and TIMP1 genes, 
which are known to be associated with ferroptosis, were 
also identified among these ten genes (124-126). These 
results raise an important question of whether ferro-
ptosis can be induced simultaneously with PANoptosis 
and draw attention to the possible relationship between 
ferroptosis and PANoptosis. It is suggested that anoikis, 
a type of apoptosis occurring within tissues, may be as-
sociated with PANoptosis due to caspase and signaling 
molecule interactions such as PI3K/Akt and Smad (101).

The elaboration of these interactions and a better un-
derstanding of the relationships linking PANoptosis and 
other types of PCD are still crucial for the development 
of clinical and therapeutic approaches. Current studies 
focus on gene analyses for different diseases to under-
stand the relationship between the death complex PAN-
optosome and PANoptosis, which can differ from disease 
to disease. 

Regulatory Factors and 
Diseases
The most important factor affecting PANoptosis and the 
formation of PANoptosomes with different cellular com-
ponents is the diversity of the pathogen. Different dis-
eases, such as bacterial, viral, fungal infections, tumors, 
and autoimmune disorders, can lead to differences in 
PANoptosome types and regulators. An overview of the 
summarized regulators is provided in Table 1. For ex-
ample, influenza viral proteins such as matrix protein 2 
(M2), nonstructural protein 1(NS1), and polymerase ba-
sic protein 1-F2 (PB1-F2) may play a regulatory role for 
ZBP1-NLRP (31). 

Casp6 also promotes IAV-induced PANoptosis and fa-
cilitates the connection between ZBP1 and RIPK3 after 
infection (32). This is surprising for Casp6, which is char-
acterized as an executioner caspase due to its role as a 
bridge between a sensor and an effector. Casp6 has also 
been identified as an important regulator of the cross-
talk signaling pathway for PANoptosis in cancer. When 
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scanning for PANoptosis-related genes as prognostic in-
dicators of thyroid cancer, Casp6 was found to be high-
ly diagnostic and abundant in tumor tissue (127, 128). 
Casp6 can also promote the differentiation of M2 mac-
rophages and activation of inflammasomes and PANop-
tosis (32). Despite these, we still have limited knowledge 
about the role of Casp6 in PANoptosis induced by other 
pathogens or stimuli (4). Radixin (RDX) was found to be 
the most relevant gene in investigating the potential of 
PANoptosis-based molecular profiling and prognostic 
factors to predict survival in breast cancer patients (129). 
Nine lncRNAs associated with PANoptosis and colon ad-
enocarcinoma metastasis have been identified and are 
significantly associated with immune infiltration. This 
suggests that PANoptosis plays an important role in the 
tumor immune microenvironment (130).

Yersinia infection triggers PANoptosis in macrophages by 
promoting the formation of a RIPK-PANoptosome com-
plex that includes RIPK1, RIPK3, Casp8, NLRP3, ASC, and 
Casp1 (independent of ZBP1) (44). TAK1 is pivotal for 
cell survival and cellular homeostasis in innate immunity 
(131). This is significant, as it was among the first regula-
tors to identify PANoptosis. The TAK1-RIPK1 relationship 
is a good demonstration that phosphorylation does not 
always lead to activation. TAK1 inhibits RIPK1, limiting 
its activation and preventing spontaneous activation of 
PANoptosis (3). Yersinia can inhibit TAK1 through YopJ 
mediation, acting as a handbrake for PANoptosis (39, 
132, 133). In fact, the effects of TAK1 on cell death 
were recognized and investigated prior to the identifica-
tion of PANoptosis (20, 21, 134). Many pathogens pro-
duce inhibitors of TAK1 (TAK1i). Inhibition or deletion of 
TAK1 results in the induction of PANoptosis in the host 
through the RIPK1-PANoptosome complex. PANoptosis 
also promotes pathological inflammation. Therefore, it 
is important to understand the molecular mechanisms 
that regulate TAK1i-induced cell death. Recently, it was 
reported that TAK1i-induced RIPK1-mediated activation 
of PANoptosis requires the phosphatase PP6 complex 
(131). PTBP1 and RAVER1 are also functional regulators 
involved in activating TAK1i-induced PANoptosis (135).

Since deletion of components of the linear-ubiquitin as-
sembly complex (LUBAC) associated with cell death sig-
naling and other complex-I molecules such as ubiquitin 
effector protein A20 can lead to embryonic death and 
autoinflammatory diseases, it is thought that they may 
contribute to the regulation of PANoptosis in a similar 
way to TAK inhibitors (30, 136).

Another regulator of PANoptosis is adenosine deaminase 
acting on RNA1 (ADAR1). Acting as an RNA regulator to 
maintain homeostasis, ADAR1 is a negative regulator of 
ZBP1-mediated PANoptosis. Inhibition of ADAR1 activity 
triggers ZBP1-mediated PANoptosis to inhibit tumor for-
mation (137).

Casp1 inhibition in macrophages infected with Entero-
coccus faecalis OG1RF prevents PANoptosis formation 
(138). E. faecalis can also induce PANoptosis of osteo-
blasts, which is detrimental to the regeneration of peri-
apical bone tissue. The regulation is provided by the 
NLRP3 inflammasome (139).

IRF1 is known to regulate cell death (140-142). TLR2/4 
can induce NLRP12 expression through IRF1-medi-
ated signaling, resulting in inflammasome formation 
to trigger IL-1β/-18 maturation. In addition, the gen-
erated inflammasome acts as an integral element of 
an NLRP12-PANoptosome that drives PANoptosis via 
Casp8 / RPK3 (94). Studies indicate that pro-inflam-
matory cytokines are significantly overexpressed during 
COVID-19 infection (143). However, only the combina-
tion of TNF-α and interferon-gamma (IFN-γ) has been 
reported to trigger PANoptosis. Collectively, TNF-α and 
IFN-γ trigger nitric oxide (NO) formation by activating 
JAK/STAT1/IRF1 signaling. This is followed by Casp8/
FADD-based PANoptosis (144). The synergistic effect of 
these two cytokines can also inhibit PANoptosis-medi-
ated growth of various types of tumors (145). Although 
other cytokine associations are not clear for PANopto-
sis, the signaling of IL6-JAK-STAT3, the IFN-γ response, 
and IL-2-STAT5 signaling in cancer positively correlate 
with the PANoptosis scoring. This scoring shows that 
PANoptosis is significantly correlated with the tumor 
microenvironment and infiltration levels of many types 
of immune cells, including NK cells, CD4+ and CD8+ T 
cells, and DCs (146). The discovery of gain-of-function 
mutations in STAT1 and STAT3 has expanded immuno-
logical research aimed at understanding both signaling 
pathways and associated disorders (147). In this respect, 
their relationship with the realization of PANoptosis is 
open to further investigation. In a different study, IRF1 
was identified as a master regulator of PANoptosis in 
myeloid and epithelial cells to protect against colorec-
tal cancer formation (148). Furthermore, IRF1 acts as an 
up-regulator of RIPK1-PANoptosis when co-stimulated 
with TAKi and LPS (54). In IAV infection, IRF1 contributes 
to the formation of the ZBP1-PANoptosome and drives 
PANoptotic cell death during infection (60). 
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ZBP1, MEFV, LCN2, IFI27, and HSP90AB1 have been 
identified as PANoptosis-associated genes in systemic lu-
pus erythematosus (SLE) and are associated with memo-
ry B cells, neutrophils, and CD8+ T cells. These genes play 
a role in SLE by regulating type I interferon responses 
and IL-6-JAK-STAT3 signaling-mediated regulation of 
immune cells (149).

In response to fungus, particularly infections by Candida 
albicans and Aspergillus fumigatus, ZBP1 acts as an api-
cal sensor to induce an immune response by activating 
PANoptosis (150).

Salmonella outer protein F (SopF) acts as an effector in 
Salmonella infection, regulating PANoptosis of intestinal 
epithelial cells to aggravate infection systemically. Phos-
phoinositide-dependent protein kinase-1 (PDK1) activat-
ed by SopF phosphorylates the p90 ribosomal S6 kinase 
(RSK). Phosphorylation of RSK leads to the downregula-
tion of Casp8. Thus, PANoptosis in intestinal epithelial 
cells contributes to the severity of systemic infection 
(10). 

The IL-23/IL-7 axis plays an important role in psoriasis 
and is strongly associated with PANoptosis. AIM2, one of 
the important sensors of the PANoptosome complex, is 
elevated in keratinocytes of psoriatic lesions and shows 
a pro-inflammatory effect by increasing the release of 
IL-1B and IL-18 and activating the IL-23/IL-7 axis after 
stimulation (151, 152).

NLRC5, which functions as an innate immune sensor, 
acts as a regulator for PANoptosome formation by regu-
lating TLR 2/4 signaling and NAD+ levels. NLRC5 deletion 
also protects against colitis and hemophagocytic lym-
phohistiocytosis in mice (45).

PANoptosis is also involved in the death of retinal gan-
glion cells (RGCs) induced by acute ocular hypertension 
and diabetic retinopathy. Melatonin and Dickkopf-1 may 
inhibit PANoptosis and prevent cell death (153, 154). 

PANoptosome interactions vary according to the patho-
genesis of the disease. Therefore, our molecular under-
standing of PANoptosis is not yet as well established as 
that of apoptosis or other cell death mechanisms. Dis-
ease- or inducer-specific regulatory mechanisms con-
tinue to be investigated. Various PANoptosome com-
ponents, such as NLRP3 and RIPK3, were known to be 
associated with different diseases even before PANopto-

sis was identified (30). Reassessing these diseases with 
PANoptosis mechanisms can contribute to improve our 
further understanding of PANoptosis regulation. 

The classification of many autoimmune diseases, for 
which there are still no effective treatments, may vary for 
related reasons, including environmental, biological, and 
genetic factors (155). The regulatory mechanisms of PAN-
optosis in autoimmune diseases have been investigated 
(156). Mechanisms such as the secretion of significant 
amounts of IFNs by regulating upstream pathways such 
as GAS/STING influence PANoptosome formation (156).

Other Interactions of 
PANoptosis with the Immune 
System 
As a result of the conflict between the host and patho-
gens, pathogens can develop escape strategies from the 
immune system and death mechanisms. The innate im-
mune system also has different mechanisms to eliminate 
pathogens and protect the host.  PANoptosis also allows 
the activation of an innate immune response, giving host 
cell immunity an advantage as an integrated cell death 
mechanism that can be particularly effective against in-
vading infectious agents. With different sensors, it can 
be activated in response to pathogenic triggers ranging 
from viruses to fungi (157). Cross-talk mechanisms be-
tween death pathways are important to overcome bac-
terial and viral escape strategies. This is because the 
escape strategies of pathogens are well understood and 
are generally focused on bypassing a single death path-
way; some bacterial species can perform Casp1, Casp4 
activations, NLRC4, and NLRP3 inhibition to avoid pyro-
ptosis (158-160). 

Furthermore, they can develop different strategies to 
keep pyrin inactive, such as activating PRK1/2 (161). 
Both viruses and bacteria carry out this and similar eva-
sion strategies through some specific proteins. For ex-
ample, HPV from the papillomavirus family can regulate 
the degradation of the IFI16 inflammasome through 
the E7 protein (162). Both bacteria and viruses can try 
to avoid death by similar mechanisms to escape apop-
tosis and necroptosis (18). PANoptosis offers a strategy 
to block immune evasion and infections. In addition, it 
may promote immune activation to combat immune re-
sistance in certain cancer types.
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Interactions between innate immune system cells and 
PANoptosis in cancer studies have been examined ac-
cording to PAN scoring, a risk-scoring system based on 
PANoptosis models.   M2 macrophage infiltration and 
cancer-associated fibroblasts were significantly associ-
ated with high TGF-β expression. A negative correlation 
exists between M1 macrophages and PAN score (163). 
Casp6, which plays an important role in inflammasome 
activation and PANoptosis, promotes differentiation into 
M2 macrophages. The PAN score is notably correlat-
ed with the tumor microenvironment, immune-related 
genes, and infiltration levels of most immune cells, such 
as NKs, CD4+/CD8+ lymphocytes, and DCs (146). 

A study with specifically created extracellular vesicles 
(EVs) and ultrasound (US) technique, which has been sug-
gested to improve the efficacy of cancer immunother-
apy, showed that immunogenic PANoptotic cell death 
promotes dendritic cell maturation and macrophage 
polarization and subsequent presentation of antigens 
to T cells by activating the STING pathway STING is an 
interferon stimulator (164). IFN-γ produced by DC cells 
promotes PANoptosis in mice. IFN-γ deficiency affects 
the activation of the PANoptosis-specific markers Casp3, 
GSDMD, and MLKL and decreases IL-1β expression. Fur-
thermore, dendritic cells express ZBP1, AIM2, and RIPK1, 
which are also PANoptosome sensors (165). The role of 
the STING pathway in immunity against intracellular 
pathogens and its possible direct effects on T-cells are 
well known (166). Additional studies are required to un-
derstand the contribution of these effects to PANoptosis.

A pro-tumoral group of tumor-associated neutrophils 
has been identified, with HMGB1 overexpression that re-
duces anti-tumor immunity and contributes to immune 
escape through the GATA2 / HMGB1 / TIM-3 axis (167). 
However, we still have limited knowledge about the di-
rect function of neutrophils, NK cells, and other innate 
immune system cells in the mechanism of PANoptosis.     

Future perspectives
Our knowledge of the concept of PANoptosis in the liter-
ature remains limited. Currently, research conducted pri-
marily by the groups that defined this concept has con-
tributed to its development. In this review, we provide an 
overview of the basic mechanisms of PANoptosis based 
on these studies; however, our main goal is to present 

the regulators identified in the literature in a compre-
hensive manner. 

The diversity of these regulators across different trig-
gers and disease pathogenesis makes PANoptosomes 
particularly interesting. Each of the identified sensors 
mediating the formation of PANoptosomes responds to 
different pathogens and endogenous danger signals, var-
ious PAMPs and DAMPs, to induce PANoptosis. To better 
understand the mechanisms of PANoptosis and develop 
therapeutic approaches, it is important to identify down-
stream molecules and different sensor compositions 
that activate phenotypic outcomes. The most stunning 
example of this is that PANoptosis has been implicated in 
the failure of IFN treatment for SARS-CoV-2 (64). SARS-
COV-2 is able to escape the immune system by inhibiting 
IFN-I production and reducing its activity (168). IFN ther-
apy can be used to reduce viral load. It was also thought 
that patients would improve when administered; how-
ever, IFN-induced upregulation of ZBP1 activated PAN-
optosis in response to IFN treatment, compromising 
therapeutic benefits (64). This suggests that inhibition 
of ZBP1 may improve the efficacy of IFN-based thera-
pies, suggesting the importance of PANoptosis inhibitors 
and PANoptosome components in the development of 
novel therapeutic approaches. Research in this area has 
shown promising results. A study targeting the inhibition 
of PANoptosis demonstrated that this approach protects 
the kidney from reperfusion injury (169).

For therapeutic approaches targeting cancer, infection, 
and inflammatory diseases, it is important to investigate 
not only PANoptosome components and regulators but 
also to consider triggers. For example, as a strategy for 
escape from bacterial death, Shigella flexneri prevents 
necroptosis by targeting RIPK1 and RIPK3 with the pro-
tease effector Ospd3. Similarly, OspC1 can inhibit CASP8 
apoptotic signaling (170). Shigella’s ability to block two 
death pathways is noteworthy, but its connection to 
PANoptosis remains unexplored. There are many triggers 
that have not been investigated in relation to PANopto-
sis, and this gap is rapidly being filled in the literature. 
Accumulated knowledge will improve our understanding 
of the mechanisms, sensors, and regulators of PANop-
tosis, paving the way for the development of potentially 
significant new therapeutic strategies.
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