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Abstract
Human immunodeficiency virus (HIV) was thought to be the medical pandemic of the 21st century, infecting 77.3 million people and being the cause 
of the deaths of 34.5 million people. To date, various studies have deepened our understanding of the structure, variability, and replication of HIV, 
considered virological and immunological mechanisms associated with the infection and helped design new therapeutic approaches. Antiretroviral 
treatment has transmuted AIDS from a deadly condition specific to a prolonged, controllable disease. In 1996, CCR5 and CXCR4 were co-receptors 
for HIV-1 entrance. CCR5 is the most critical chemokine co-receptor for HIV-1 entry. In 2008, allogeneic transplantation of mutant CCR5-d32 
homozygous stem cells into HIV-infected people resulted in ongoing viral control and maybe extinction of HIV. Since then, there has been a strong 
emphasis on expanding this method to a larger population and using gene-editing techniques like transcription activator-like effector nucleases, zinc 
finger nucleases and clustered regularly interspaced short palindromic repeats in hematopoietic stem cells to make subjects immune to HIV. This 
research aims to look at the use of gene-editing methods in allogeneic hematopoietic stem cell transplantation as a possible HIV treatment approach. 
Based on the literature, it is found that subjects infected with HIV who underwent gene-editing methods to edit the CCR5 gene on hematopoietic stem 
cells for 32 bp removal in the CCR5 gene have been proven to enhance positive results of the maximum number of patients. 
Keywords: HIV strains, CCR5 gene, therapeutics, gene editing, stem cells

Öz
İnsan immün yetmezlik virüsünün (HIV) 21. yüzyılın tıbbi pandemisi olduğu, 77.3 milyon insanı enfekte ettiği ve 34.5 milyon insanın ölümüne neden 
olduğu düşünülmektedir. Bugüne kadar yapılan çeşitli araştırmalar, HIV’nin yapısı, değişkenliği ve replikasyonu, enfeksiyonla ilişkili virolojik ve 
immünolojik mekanizmalar hakkındaki bilgilerimizi derinleştirmiş ve yeni terapötik yaklaşımların tasarlanmasına yardımcı olmuştur. Anti-retroviral 
tedavi, AIDS’i ölümcül bir hastalıktan, kontrol edilebilir bir hastalığa dönüştürmüştür. HIV-1 girişi için, 1996 yılında, CCR5 ve CXCR4 ko-reseptör 
olarak tanımlanmıştır. CCR5, HIV-1 girişi için en kritik kemokin ko-reseptörüdür. 2008’de, mutant CCR5-delta 32 homozigot kök hücrelerinin 
HIV ile enfekte insanlara allojenik nakli, devam eden viral kontrol ve belki de HIV’in neslinin yok olması ile sonuçlanmıştır. O zamandan beri, 
HIV’ye bağışıklık kazandırmak için, bu yöntemin daha geniş bir popülasyona yayılmasına ve transkripsiyon aktivatör benzeri efektör nükleazlar, 
çinko parmak nükleazlar ve hematopoietik kök hücrelerde kümelenmiş düzenli aralıklı kısa palindromik tekrarlar gibi gen düzenleme tekniklerinin 
kullanılmasına güçlü bir vurgu yapılmıştır. Bu araştırmanın amacı, olası bir HIV tedavisi yaklaşımı olarak allojenik hematopoietik kök hücre naklinde 
gen düzenleme yöntemlerinin kullanımını incelemektir. Literatüre dayalı olarak, CCR5 geninde 32bp çıkarılması için hematopoietik kök hücrelerde 
CCR5 genini düzenlemek amacıyla gen düzenleme yöntemleri uygulanan HIV bulaşmış deneklerin, maksimum sayıda hastada pozitif sonuçları 
artırdığı kanıtlanmıştır.
Anahtar Kelimeler: HIV suşları, CCR5 geni, terapötikler, gen düzenleme, kök hücreler
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Introduction 
The human immunodeficiency virus (HIV) was 

considered the medical epidemic of the twenty-first century 
(1). The very first case of HIV infection was discovered 
in the summer of 1981 (2). Homosexual people develop 
immunodeficiency and die due to illnesses that their 
immune responses should have been able to fend off (3). 
Additionally, infected patients may develop dark purple 
tumors caused by Kaposi’s sarcoma, infectious cancer (4). 
In 1982, the Centers for Disease Control and Prevention 
coined acquired immunodeficiency syndrome (AIDS) 
(5). Early theories indicated that AIDS was transmitted 
by environmental factors such as homosexual men and 
intravenous drug users (6). HIV is a member of lentivirus 
(LT) genus, retroviruses with variable genomes, and cone-
shaped capsid core particles belong to the LT family (7). 
LT can successfully infect non-dividing cells (8). HIV’s 
retroviral genome is made up of two similar retroviral 
RNA copies (9). Initially, a virus enters a new host cell, its 
genome, like that of all retroviruses, is encoded by RNA 
transcribed into viral DNA by the viral reverse transcriptase 
(Figure 1) (10). It is mainly grouped into 2 different types, 

HIV-1 and HIV-2, based on their genomic structure. HIV-1 
is the primary group that infected 60 million people and 
resulted in the deaths of 25 million people (11). The 
structural genes like a gag, pol, and env are present in both 
HIV strains (12). 

HIV Infection and Mechanism
The most common method of HIV transmission is 

sexual transmission (ST) (13). It is contracted by contact 
with cell-free or cell-associated infectious viruses in the 
sperm or mucosal surfaces (14). Transfer of HIV through 
injective drug use, exposure to contaminated blood and 
blood products through blood transfusion, and transmission 
of HIV to a fetus or child from an infected mother are 
among the less prevalent modes of infection (15). Under 
one week after exposure, partly activated CD4+ T-cells 
in the vaginal mucosa were identified as the first sites of 
productive viral replication in early studies of ST in the 
SIV model (16). After total exposure, CD4+ T-cells become 
more activated, with SIV spreading locally a few days later 
in the less numerous but more vulnerable activated CD4+ 
T-cells (17). According to a more recent study on SIV 
infection in macaques (18), the virus subsequently travels 
swiftly to gut-associated lymphoid tissue, most likely 
through draining, in the gastrointestinal lamina propria, 
where it causes a significant loss of memory CD4+ T-cells. 
A comparable cellular decrease appears to occur (19,20). 
The replication cycle of HIV bears a substantial similarity 
to that of other LTs (21,22).

HIV and SIV have unique binding receptors and 
co-receptors, unlike other LTs (23). HIV replication has 
2 phases; early and late (8). The early phase is marked by 
recognizing targeted cells by the mature vision and the 
process leading to and including the genomic DNA into 
the host cell’s chromosome. The late phase is marked by 
the controlled expression of the incorporated pro-viral 
genome (24). It can be summed up in seven steps; I) 
attachment and entry; II) reverse transcription III) nuclear 
import; IV) integration; V) transcription; VI) nuclear 
export; VII) synthesis and packaging of viral proteins 
(25,26). It encompasses the whole process, from the virus 
budding to viral maturation (27). Most provirus-carrying 
cells were discovered to be of clonal origin, with defective 
provirus being the most habitual. HIV incorporates actively 
transcribed genes, mainly oncogenesis, and cell-cycle 
control genes. According to a report, 99 percent of infected 
cells belong to a clonal population. Figure 2 demonstrates 
the mechanism of HIV in the human body.

HIV Strains and Chemokine Receptors
A  co-receptor  is a  surface cell receptor to which 

a signaling molecule binds to other than the primary Figure 1. Structure of the HIV genome.
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receptor to assist ligand recognition and initiate biological 
processes, such as entering a pathogen into a host cell 
(28). This receptor classification is based on structure, 
disulfide-like cysteine residues, and angiogenic effects 
(29). There are 17 known co-receptors for these chemokine 
ligands (30). CCR5 and CXCR4 are the most critical 
co-receptors in HIV infection (31). Tropism refers to a 
virus’s capacity to connect to certain co-receptors (32). 
Based on the dominant co-receptor in the early stages of 
infection, HIV is divided into three major tropic strains 
(33). B-chemokine CCR5 is the most prevalent co-receptor 
in the HIV-1 genetic grouping (33). This strain is also 
known as macrophage or m-tropic (34). CXCR4 acts as the 
co-receptor in other isolates for entry and replication and is 
also known as T-lymphocytic or T-tropic. HIV can attach 
to CCR5 and CXCR4 receptors, a dual tropic or X4R5 
strain (35). Knowledge of the structure, variability, and 
replication of HIV is essential for understanding virologic 
and immunological mechanisms associated with the 
infection and helps designing new therapeutic approaches 
(36). This review focuses on therapeutic methods that act 
as a potential treatment for HIV-1 infection using CCR5 
b32 silencing as an alternative to traditional treatments like 
Highly Active Antiretroviral Therapy (HAART). Table 1 
shows the types of HIV strains and structural genes.

Traditional HIV Treatments and Side Effects
In 1996, triple drugs were introduced into 

antiretroviral medication regimens comprising a varied 

blend of nuclear and non-nucleoside and protease 
inhibitors-widely known as HAART, a triple-combination 
antiretroviral treatment (ART) with two nucleoside-
reverse transcriptases (NRTIS) suppresses and prevents 
the development of viral replication (37). It also includes 
triple-combination ART with a protease inhibitor (PI), a 
non-nucleoside-reverse transcriptase inhibitor (NNRTI). 
Although the routines were complex and frequently 
challenging to monitor, HAART has transformed AIDS 
to a protracted and controlled illness (38). However, 
these effective agents result a toxicity rate ranging 
from endocrinological,  hematologic, and cardiovascular 
problems to fat loss and redistribution syndromes (39). 
In a study of 862 HIV-infected individuals on treatment, 
toxicity was the most common reason for cessation, 
with 312 patients (36.2%) reported it as the reason (40). 
Non-adherence and failure to complete the treatment 
(including immunologic, virologic, and clinical failure) 
led to treatment discontinuation in 19.6% and 14.1% of 
these patients, respectively (41). Lipodystrophy is a type 
of fat cell maldistribution that comprises lipoatrophy, and 
lipid accumulation is associated with several negative 
consequences. PI and NRTIS-based art regimens have 
been linked to lipodystrophy (42). Rash has been recorded 
in 10-17% of individuals who have used the NNRTIS 
system (43). IDV usage is associated with retinoid-like 
symptoms, including baldness, dry skin, dry lips, and 
ingrown nails, in roughly 30 percent of patients who 
received t16 (44).

Figure 2. Replication cycle of HIV.
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CCR5 Gene		
This gene has G protein-coupled receptor, includes 

seven transmembrane domains and is located on monocytes/
macrophages, B-cells, T-cells, and microglia (45). RANTES 
and MIP are two chemokines that attach to and are secreted 
(regulated on activation, normal T-cell expressed and 
secreted) (46). CCR5 is located on chromosome 3p21, 
near the CCR2 gene. CCR5 gene variants have been 
linked to an increased risk of HIV infection, according 
to several studies (47). In Europe, 10% of people carry 
the CCR5-delta32 (CCR5d32) allele (48). Homozygote 
frequency in the population is around one percent (49). 
Several diseases, especially those affecting the nervous 
system, have been linked to CCR5 (50). Tissue-resident 
macrophages, microglia, dendritic cells, langerhans cells, 
and osteoclasts are among the cell types that express CCR5, 
76 times higher than the expression in CD4+ T-cells in NK 
cells (22). Other cells that express CCR5 include langerhans 
cells and osteoclasts (51). Additionally, researchers have 
discovered CCR5 expression in various non-hematopoietic 
cells, including neurons, endothelial cells, smooth muscle 
cells in the arteries, and hepatic stellate cells (52). R5 
tropic strain, the most predominant strain transmitted in 
the initial stages of infection, binds to CCR5 and makes 
CCR5 act as a predominant chemokine co-receptor in 
HIV-1 infection (53). CCR5 is the significant co-receptor 
in 51% of HIV-1 infections (54). Non-hematopoietic cells, 
including osteoblasts, fibroblasts, vascular endothelium, 
epithelium, vascular smooth muscle cells, liver cells, and 
neurons, express CCR5 with other physiological symptoms 
functions that are not related to the immune response (55). 
However, editing CCR5 does not meet the 1st criterion 
because that homozygosity for the CCR5d32 mutated gene 
has unusual adverse events (56), a four-fold increased risk 
due to influenza related death (57), and impaired bone 
resorption activity (58). Furthermore, CRISPR-Cas9 has 
been linked to several articles documenting unintended 
off-target alterations (59). Some infrequent but significant 

alterations were reported (60), others detected substantial 
reductions (61,62), and further revealed inexplicable 
complicated deletions and substitutions in rodents created 
using CRISPR-Cas9 (63). As a result, the CCR5 twins must 
be closely examined for some expected outcomes, including 
greater vulnerability to influenza infection, aberrant bone 
formation, and other inflammatory problems (64).

Mutation in CCR5
The CCR5d32 mutation was found in few people who 

were immune to HIV-1 infection after being regularly 
exposed to it (65). In the CCR5 chemokine receptor 
locus, the CCR5d32 allele produces a premature stop 
codon of 32 base pairs, leading to receptor obliteration 
(66). It confers resistance to HIV-1 infection (67). Due to 
inefficient HIV binding on targeted cells, subjects with the 
CCR5 mutation are comparatively strongly HIV-resistant 
1 (68). CCR5d32 mutation was reported as a rare event 
(69). CCR5d32 mutations have been identified in pre-
historic skeletons dating over 5000 years (70), long before 
smallpox and plague became common human illnesses. 
People with a homozygous CCR5-32 bp gene may have 
evolved a chemokine system to compensate for the lack of 
a functional CCR5 (71).

Gene Editing Techniques and Their Application 
Cellular monitoring, gene expression control, epigenetic 

change, pharmaceutical drug innovation, structural gene 
testing, and genetic identification have benefited from gene 
editing technologies (Table 2) (72). Even though the out-of-
target impact of genome-editing technique implementation 
is still expected to be strengthened, next generation 
sequencing and quite specialized nanomaterials have 
enhanced productivity generating genome editing methods 
closer to the treatment center (73,74). Synergistic T-cells 
and allogeneic stem cells (STC) have been examined as an 
alternative to HAART therapy to treat HIV infection (75). 
The initial recipients of hematopoietic STC transplantation 

Table 1. Structural genes and different tropic strains on HIV.
Gene Primary protein Function

Glycosaminoglycan (gag) Gag poly-protein The gag gene encodes
The structural proteins of the core

Polymerase (pol) Pol poly-protein Env gene encodes glycoproteins gp120 and gp41, recognizing cell surface receptors

Envelope (env) Gp160

The pol gene encodes enzymes crucial for viral replication, which are the reverse 
transcriptase that converts viral RNA into DNA, the integrase that incorporates the viral 
DNA into host chromosomal DNA (the provirus), and the protease that cleaves large gag and 
pol protein precursors into their components

HIV strains

Strain Predominant co-receptor Tropic strain

HIV tropic strain-1 CCR5 R5 tropic

HIV tropic strain-2 CXCR4 X4 tropic

HIV tropic strain-3 CCR5 and CXCR4 Dual tropic
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(HSCT) were HIV-positive lymphoma patients (76). The 
frameshift mutation generated by the 32-bp deletion in the 
CCR5 gene hinders HIV-1 infection because the shortened 
protein does not enable effective gp120 binding (77). 
People who are homozygous for this gene are immune to 
the r5-tropic HIV-1 strain (78). However, the small number 
of individuals homozygous for b32 mutation is a step back 
for HSCT. Therefore, using gene-editing technologies to 
generate gene-editing tools to Silence CCR5 in autologous 
cells’ genomes is highly recommended (79). By using 
designer nucleases, DNA may be cleaved at specific 
locations (80). 

The b32 deletion was initially identified as a natural 
resistance to HIV transmission in 1996 (81). Since then, 
several methods have been used to tune this HIV-1 “major 
vulnerability” to produce novel CCR5-targeted ART (82). 
CCR5 knockout caused duplicating the naturally occurring 
CCR532 deletion (83). There have been significant 
advances in gene editing techniques and tools, including 
ZFNs, TALENs, and CRISPR (84). Transplantation of 
CCR5d32 homozygous STCs into an patient with HIV 
in 2008 led to long-term viral control (85). Since then, 
there has been much interest in applying this technique 
to a larger population to induce immunity to HIV (86). 
ZFNS have shown versatility for genome editing, and the 
use of ZFNS is now well dependable in several organisms 
and human cells (87). Because of the double-strand break 
caused by engineered ZFNS targeting CCR5d32, the 
natural CCR5d32 mutation is successfully eliminated (88). 
Primary human CD4+ T lymphocytes revealed identical 
results to the animal model in vitro and an HIV-1 infection 
model in mice (89). A study regarding ZFN nucleases 
included 12 HIV-infected patients who received 10 CD4+ 

T-cells with b32 deletion and were administered HAART 
for four weeks (90). HAART was restarted in two patients 

after increasing HIV RNA levels (91). After a 12-week 
break from HAART, the viral load was reduced in four 
patients, indicating the relative survival of modified CD4+ 
T-cells (92).

In contrast, an undetectable viral load was found in a 
patient who was found to be heterozygous for the CCR5d32 
allele, most likely due to suboptimal engraftment and the 
small number of cells containing a bi-allelic disruption 
(35). Another study enrolled 10 subjects heterozygous for 
CCR5d32 (35). Three of 8 subjects had low-level viral 
content below the detection limit after discontinuation of 
HAART for 20 weeks (35). Figure 3 represents the CCR5 
and CXCR4 gene functions in HIV.

HIV Antagonists - Early Inhibitors
Gp120 co-receptor blockers  interfere with HIV viral 

attachment to the CD4 surface, preventing viral infection 
by preventing the virus from fusing with the cell’s 
membrane (93). The targeted co-receptors are part of a 
seven-transmembrane GPCR that binds to chemotactic 
chemokines, creating cell signals and sustaining the 
immune response (94). RANTES, mip-1, and mip-1, 
maraviroc, vicriviroc, cencriviroc, and maraviroc are all 
CCR5 inhibitors (95). Plerixafor, alx40-4c, t22, and other 
highly cationic compounds are the agents that act on 
CXCR4 nsc651016, a distamycin analog, inhibits both 
CCR5 and CXCR4 receptors (96). CXCR4 and CCR5 
are the most commonly employed chemokine receptors 
as co-receptors in HIV-1 entrance, and their increased 
transcription is critical for regulating virus tropism (97). 
During T-cell stimulation and IL-2 response, CXCR4 and 
CCR5 transcription is differently modulated. In T-cells, 
extended stimulation with IL-2 enhances CC-chemokine 
receptor transduction and sensitivity to CC-chemokines 
(98). CXCR4 activation following T-cell stimulation, on 

Table 2. Advantages and disadvantages of gene-editing techniques.
Gene editing 
techniques Advantages Disadvantages References

Mega-nucleases
It is the potential to detect large segments 
of 14-40 bp DNA enhanced earlier the 
gene-editing performance.

Since each protein has distinctive identification pattern, the 
likelihood of discovering an appropriate mega nuclease to 
consider a valuable target had been minimal.

(47)

ZFNs
There was an improvement in selective 
homologous rearrangement in experimental 
organisms and human cells.

Every target location will need time-consuming enzyme 
synthesis for DNA identification. (48,49)

TALENs

The identification tendency of each base 
rather than three bp TALE enzymes around 
each other with a combination of the FOK 
I endonuclease segment provided it as an 
optimum gene-editing method.

Protein determines how DNA is recognized. (50)

CRISPR/CAS9

Technological convenience, the flexibility 
of operation, and excellent efficiency
It is not only for gene editing but also for 
regulatory disruption, epigenetic control, 
and genome visualization.

Out of target and unusual genetic changes. (51-53)
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the other hand, shows a different pattern (99). After 
simultaneous PHA activation and IL-2 response, CXCR4 
quickly increases, attaining its peak. However, this 
contradictory expression of CXCR4 cannot inhibit the virus 
entirely and limitations for treating HIV (100).

Maraviroc
Maraviroc is a small, reversible CCR5 antagonist 

molecule (101). At present, r5-tropic HIV-1 infected 
patients are approved for treatment. It is an allosteric non-
competitive antagonist that blocks chemokine and HIV 
gp120 binding by targeting and altering CCR5 chemokine 
identification site 2 (102). Therefore, a susceptible tropism 
test should be used to identify which HIV strain is infecting 
the patient before starting Maraviroc (22). Maraviroc 
injection to individuals infected with the x4 tropic strain of 
HIV is the most prevalent reason for treatment failure (22). 
It is a CCR5 inhibitor that prevents HIV-1 transmission 
in humanistic RAG-hu rodents and chimps by interfering 
with HIV-envelope adherence to CCR5 through dynamic 
modification (103). In an ex vivo test, though, a single 
300-mg dosage was insufficient to inhibit rectal or vaginal 
HIV-1 transmission (104,105).

In contrast to CCR5 antagonists, the drug resistance 
profiles of HIV protease, reverse transcriptase, and 
integrase inhibitors are unique (106). Maraviroc can 
therefore be provided to HIV-1-positive patients who 
have developed medication resistance to other antiviral 
authorized drugs beneficially (107). Additionally, 
Maraviroc is effective against CCR5-tropical HIV-2 
addition HIV-1 (108). Although this approach should be 
tested in large-scale clinical trials (109); in vitro studies 
have shown that dual-r5x4-tropical HIV-1 strains are 
genetically and phenotypically identical to the R5 strain 

and they can inhibit MVC 163. As a consequence of 
engaging CCR5, Madrid-Elena et al. (110) discovered that 
Maraviroc might possess a role in stimulating persistent 
viral expression by activating NF-kB. Their findings 
suggest that Maraviroc might be used as a possible delayed 
restoration medication in HIV-1 affected individuals (111).

P140 (Leronlimab)
P140 is a monoclonal CCR5 antibody that binds to a 

complex epitope on CCR5 that spans several extracellular 
domains (112). Pro140 inhibits the HIV r5 tropic 
strain (113). P140 may have reliable, dose-dependent, 
significant antiviral activity with comparatively few side 
effects, according to two small trials (114). While the 
US food and drug administration has given P140 fast 
track approval, broader studies on its efficacy yet to be 
conducted. A single 5-mg/kg or 10-mg/kg intravenous 
infusion of P140 showed significant, influential, and long-
lasting antiviral efficacy in patients with CCR5-tropic 
HIV (115). P140 has also been shown to inhibit several 
r5x4 viruses (113).  P140 reduced HIV-1 RNA levels by 
1.51 log10 copies/mL compared to 0.15 log10 copies/
mL in the control group (116). A phase 2b/3 clinical 
research is currently underway to investigate the effect 
of once-weekly subcutaneous injection of leronlimab 
(117). The clinical trial (NCT00642707) reported that 
diarrhea, headache, enlarged lymph nodes, and elevated 
blood pressure were the most prevalent adverse effects 
related to leronlimab (115). Strengthening of the muscle, 
discomfort, and inflammation were all minor and 
transitory adverse symptoms that occurred at or near the 
site of injection. Dhody et al. (115) reported that the host 
and virologic markers that indicate therapeutic efficacy 
on PRO 140 treatment could be established, PRO 140 has 
the option to satisfy an unfulfilled requirement for a more 

Figure 3. CCR5 and CXCR4 gene functions in HIV.
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straightforward, lengthy, solitary treatment strategy for 
HIV transmission (118).

Outcomes of Allogenic STC Transplantation

Berlin Patient	
In a 2009 case report of an 1 infected individual with 

HIV, the so-called Berlin patient was on suppressive ART 
(118). He underwent a myeloablative allogeneic HSCT. 
When he developed acute leukemia. The matching donor 
selected was a homozygous  CCR5 d-32 individual, a 
base pair 32 deletion, which results in a non-functional 
gene product that inhibits the expression of CCR5 at 
the cell surface leading to inefficient binding of HIV to 
targeted cells. Additionally, when the Berlin patient’s 
leukemia reappeared, he had whole-body irradiation, 
chemotherapy, and a second transplant from the same 
donor. It is impossible to detect HIV-1 RNA in plasma, 
which is valid for HIV-1 DNA in peripheral CD4 T-cells. 
With 24 million resting CD4 T-cells, quantifiable viral 
development tests from peripheral CD4 T lymphocytes 
revealed no reactive viruses CD4 T-cells from the patient 
had CCR5-tropic but not CXCR4-tropic HIV-1 viruses in 
their HIV-1 DNA before the transplant. One allogeneic 
HSCT with homozygous CCR532 donor cells might be 
adequate for the remission of HIV-1, and the findings 
promote the growth of HIV reduction techniques based 
on inhibiting CCR5 expression according to these 
findings (119). The Berlin patient remained free of HIV 
without ART for 10+ years, considering him free of HIV.

London Patient 
For 18 months after discontinuing ART, the London 

patient had an undetectable plasma viral load and HIV 
DNA in peripheral CD4+ T-cells, as determined using 
an ultrasensitive technique (120). Allogeneic HSTC 
from a CCR5d32 homozygous donor was performed for 
Hodgkin’s lymphoma in this patient. HIV remission might 
be achieved with a less rigorous treatment strategy for the 
London patient, who had one transplant and received 
low-dose whole-body radiotherapy (121). According 
to these case reports, hematological malignancies and 
HIV-1 infection may benefit from HSPC transplantation. 
None of those patients have been found positive for 
HIV. However, this is an optimistic approach since the 
frequency of homozygous CCR532 is rare accounting for 
less than 1% of the Caucasian population (122).

Conclusion
HAART has transformed AIDS to a chronic disease. 

However, tthose agents may cause a number of adverse 
events such as endocrinological, hematologic and 
cardiovascular side effects. On the other hand, CCR5d32 

silencing therapies promise better results with fewer side 
effects. The most dominant co-receptors in HIV infection 
are CCR5 and CXCR4. HIV-1 susceptibility might be 
related to homozygosity in the chemical receptor CCR5 
for the natural D32 deletion. Subjects with the mutation 
of CCR5 gene are comparatively highly resistant to HIV-1 
due to the inefficient binding of HIV on targeted cells. 
HSPC gene therapy to HIV-1 infected patients with b-32 
homozygous donors may be a potentially curative therapy. 
The latest advancements in gene editing technologies 
and methods have enabled us to show this naturally 
occurring b32 mutation as a potential treatment for possible 
eradication of HIV as an alternative therapeutic method to 
traditional methods like HAART. 
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